Characterization of furosemide-sensitive Mg²⁺ influx in Yoshida ascites tumor cells

T. Günther, J. Vormann and R. Averdunk*

Institute of Molecular Biology and Biochemistry, Free University of Berlin, Arnimallee 22, D-1000 Berlin 33 and * Institute of Clinical Chemistry and Clinical Biochemistry, Free University of Berlin, Hindenburgdamm 30, D-1000 Berlin 45, Germany

Received 29 November 1985; revised version received 13 January 1986

Partially Mg^{2+} -depleted Yoshida ascites tumor cells took up Mg^{2+} after reincubation in Mg^{2+} - and HCO_3^- -containing media. Mg^{2+} influx was insensitive to ouabain, amiloride and disulfonic stilbenes, but was non-competitively inhibited by furosemide ($K_1 = 0.4$ mM) and bumetanide. Mg^{2+} influx obeyed Michaelis-Menten kinetics with respect to Mg^{2+} concentration ($K_m = 1.1$ mM) and was sigmoidal with respect to HCO_3^- concentration. Electroneutral Mg^{2+} , HCO_3^- cotransport was supposed to be the mechanism of Mg^{2+} influx.

Mg²⁺ influx Furosemide sensitivity (Yoshida ascites tumor cell)

1. INTRODUCTION

In [1], we described that thymocytes and ascites tumor cells, partially depleted of Mg^{2+} , take up Mg^{2+} after reincubation in Mg^{2+} -containing media depending on the presence of HCO_3^- . Here, we characterize the Mg^{2+} uptake mechanism by means of various transport inhibitors.

2. MATERIALS AND METHODS

Yoshida ascites tumor cells were grown for 72 h at 37°C in sterile RPMI 1640 medium with addition of 10% fetal calf serum (Seromed, Munich), 25 mM Hepes, pH 7.4, 15 mM NaHCO₃, 0.1 g/l streptomycin and 0.06 g/l penicillin.

For Mg²⁺ depletion, the ascites tumor cells (cell concentration 1%) were incubated at 37°C for 1.5 h in Na⁺ medium with 5 mM 2-DOG instead

Abbreviations: 2-DOG, 2-deoxyglucose; DIDS, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid; SITS, 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid; [Mg²⁺]_i, intracellular Mg²⁺ content; [Mg²⁺]_o, extracellular Mg²⁺ concentration

of 5 mM glucose. 2-DOG was phosphorylated by ATP resulting in ATP depletion and Mg^{2+} efflux [1]. The Na⁺ medium contained (in mM): 145 NaCl, 5 KCl, 1 Na₂HPO₄, 0.5 MgCl₂, 1.2 CaCl₂, 30 Hepes, pH 7.4, 5 glucose. For removal of 2-DOG the cells were centrifuged at $1000 \times g$ for 10 min and reincubated, as indicated in the figure legends. After removal of 2-DOG and reincubation with glucose the cellular energy state was rapidly normalized [1].

When HCO₃-containing medium was used for reincubation, the medium was gassed with air-5% CO₂. Some experiments were done with K⁺ medium, containing (in mM): 120 KCl, 20 KHCO₃, 1 K₂HPO₄, 0.5 MgCl₂, 1.2 CaCl₂, 30 Hepes, pH 7.4, 5 glucose and with Cl⁻-free medium, containing (in mM): 50 NaHCO₃, 0.5 Mg acetate, 1 Na₂HPO₄, 5 glucose and 150 sucrose. The viability of the cells during Mg²⁺ depletion and reincubation was determined by trypan blue staining.

At various times during incubation with 2-DOG or reincubation aliquots were taken and washed with cold 0.15 M NaCl. The sedimented cells were extracted with 5% trichloroacetic acid. Mg²⁺ was

measured in the trichloroacetic acid extracts by atomic absorption spectrophotometry and related to protein content, measured according to Lowry et al. [2]. The protein content of the cells amounted to 0.12 g/g wet wt.

3. RESULTS AND DISCUSSION

Mg²⁺ efflux is inhibited by amiloride [3]. We therefore investigated the effect of amiloride on Mg²⁺ uptake. As shown in fig.1, amiloride did not inhibit Mg²⁺ uptake, indicating that Mg²⁺ influx operates by a mechanism other than Mg²⁺ efflux.

However, Mg^{2+} influx was inhibited by furosemide. Furosemide inhibition of Mg^{2+} influx was noncompetitive with respect to $[Mg^{2+}]_0$ (fig.2, $K_1 = 0.4$ mM). Fig.2 also shows that Mg^{2+} uptake obeys Michaelis-Menten kinetics, with a K_m for Mg^{2+} amounting to 1.1 mM.

Furosemide and bumetanide inhibit Na⁺,K⁺,Cl⁻ cotransport and Na⁺,HCO₃/Cl⁻ exchange, the latter operating via the anion-exchange system, whereas both transport systems are not inhibited by amiloride and ouabain [4–7].

As shown in fig.1, Mg²⁺ uptake was insensitive to amiloride and ouabain, but was inhibited by furosemide and bumetanide. Thus, Mg²⁺ uptake was affected by these inhibitors similar to the

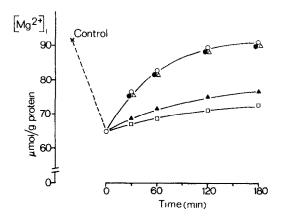


Fig. 1. Re-uptake of Mg²⁺ in Mg²⁺-depleted Yoshida ascites tumor cells. Cells were reincubated in Na⁺ medium with: 20 mM HCO₃⁻ (○), 20 mM HCO₃⁻ and 0.1 mM ouabain (●), 20 mM HCO₃⁻ and 1 mM amiloride (△), 20 mM HCO₃⁻ and 1 mM furosemide (□), 20 mM HCO₃⁻ and 1 mM bumetanide (▲). Mean of 3 experiments.

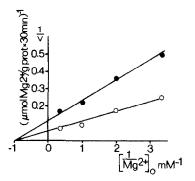


Fig. 2. Double-reciprocal plot of Mg^{2+} influx $(1/\nu)$ vs $1/[Mg^{2+}]_o$. Mg^{2+} -depleted Yoshida ascites tumor cells were reincubated in Na^+ medium with 20 mM HCO_3^- and different Mg^{2+} concentrations. Incubation without furosemide (\circ) , in the presence of 0.5 mM furosemide (\bullet) .

Na⁺,K⁺,Cl⁻ cotransport [6] and Na⁺,HCO₃⁻/Cl⁻ exchange [5].

Mg²⁺ influx was dependent on HCO₃ [1]. Fig.3 shows that the Mg²⁺ influx dependence on HCO₃ concentration gives rise to a sigmoidal curve and furosemide inhibits Mg²⁺ influx by reducing the velocity of Mg²⁺ uptake.

When the values of fig. 3 were plotted as a function of $log[HCO_3^-]$ vs $log v/V_{max} - v$ (Hill plot [8]), where v is the rate of Mg^{2+} influx at a distinct HCO_3^- concentration and V_{max} the maximal rate of

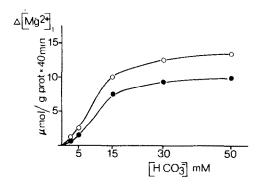


Fig. 3. Rate of intracellular Mg²⁺ uptake in Mg²⁺-depleted Yoshida ascites tumor cells. Cells were incubated in Na⁺ medium with different HCO₃⁻ concentrations. Incubation without furosemide (O), in the presence of 0.3 mM furosemide (O). Mean of 3 experiments. The pH of the medium with 2.5, 5, 15, and 30 mM HCO₃⁻ amounted to 7.40; pH in the medium with 50 mM HCO₃⁻ amounted to 7.46.

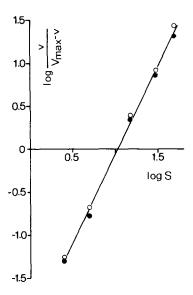


Fig. 4. Values of fig. 3 plotted according to Hill [8] as a function of $\log \nu/V_{\text{max}} - \nu$ vs $\log S (\log[\text{HCO}_3^-])$.

 ${\rm Mg}^{2^+}$ influx, a straight line with a slope of n=2 was obtained (fig.4). A Hill coefficient (n) of 2 indicates that 2 HCO $_3^-$ are simultaneously needed in Mg $^{2^+}$ influx. HCO $_3^-$ may activate the Mg $^{2^+}$ uptake system cooperatively or 2 HCO $_3^-$ may be cotransported with Mg $^{2^+}$ in an Mg $^{2^+}$,HCO $_3^-$ symport.

To characterize the action of HCO₃ in Mg²⁺ uptake, DIDS and SITS, which inhibit HCO₃/Cl⁻ exchange [7] and Na⁺,HCO₃/Cl⁻ exchange [5], were tested. As shown in fig.5, DIDS and SITS had no influence on Mg²⁺ uptake. Thus, HCO₃/Cl⁻ exchange and Na⁺,HCO₃/Cl⁻ exchange are not involved in Mg²⁺ uptake.

A further differentiation of the involved transport system is indicated by the result that Mg²⁺ uptake was not changed when extracellular Cl⁻ was omitted (fig.5). Thus, Mg²⁺ influx via the Na⁺,K⁺,Cl⁻ cotransport which depends on extracellular Cl⁻ cannot take place. As incubation in Cl⁻-free medium depletes cells of intracellular Cl⁻ [5], Mg²⁺ uptake via Na⁺,HCO₃-/Cl⁻ exchange [5] can also be excluded in agreement with the lack of effect of DIDS and SITS. Therefore, it may be suggested that Mg²⁺ is taken up by Mg²⁺,HCO₃-cotransport. The absence of an effect of DIDS and SITS on Mg²⁺ influx is no argument against separate Mg²⁺,HCO₃-cotransport. The inhibitory effect of DIDS and SITS may only be concerned

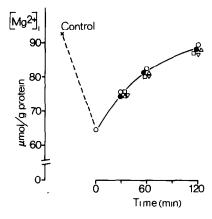


Fig.5. Re-uptake of Mg²⁺ in Mg²⁺-depleted Yoshida ascites tumor cells after reincubation in Na⁺ medium with: 20 mM HCO₃⁻ (○), 20 mM HCO₃⁻ and 1 mM DIDS (♠), 20 mM HCO₃⁻ and 1 mM SITS (△), K⁺ medium (□) and Cl⁻ free medium (▽). Mean of 2 experiments.

with the exchange of HCO₃⁻ against Cl⁻ and not with Mg²⁺,HCO₃⁻ cotransport. Furthermore, the amount of Mg²⁺ taken up was only 3 mmol/l cells within 2-3 h. The corresponding amount of HCO₃⁻ taken up by Mg²⁺,HCO₃⁻ cotransport may not influence the rate of Mg²⁺ uptake or could be eliminated by reactions other than HCO₃⁻/Cl⁻ exchange.

As another hint for the stoichiometry of Mg²⁺ influx we tested whether Mg²⁺ uptake depends on membrane potential. Depolarization of the cell membrane by incubation of cells in K⁺ medium did not reduce Mg²⁺ influx (fig.5), indicating an electroneutral uptake mechanism. Thus, our results can be interpreted by the assumption that Mg²⁺ influx operates via electroneutral Mg²⁺, HCO₃ symport, cotransporting 1 Mg²⁺ and 2 HCO₃ into the cell.

Net Mg²⁺ uptake in Mg²⁺-depleted cells stopped when the original Mg²⁺ content was achieved ([1] and figs 2,5). Probably, net Mg²⁺ uptake via Mg²⁺, HCO₃ cotransport is inhibited at normal intracellular Mg²⁺ concentration.

ACKNOWLEDGEMENT

We thank R. Förster for her excellent technical assistance.

REFERENCES

- [1] Gunther, T. and Vormann, J. (1985) Magnesium Bull. 7, 66-69.
- [2] Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951) J. Biol. Chem. 193, 265-275.
- [3] Günther, T. and Vormann, J. (1985) Biochem. Biophys. Res. Commun. 130, 540-545.
- [4] Geck, P., Pietrzyk, C., Burckhardt, B.-C., Pfeiffer, B. and Heinz, E. (1980) Biochim. Biophys. Acta 600, 432-447.
- [5] L'Allemain, G., Paris, S. and Pouysségur, J. (1985)J. Biol. Chem. 260, 4877-4883.
- [6] Bourrit, A., Atlan, H., Fromer, I., Melmed, R.N. and Lichtstein, D. (1985) Biochim. Biophys. Acta 817, 85-94.
- [7] Lowe, A.G. and Lambert, A. (1983) Biochim. Biophys. Acta 694, 353-374.
- [8] Koshland, D.E. jr (1970) in: The Enzymes I (Boyer, P.D. ed.) 3rd edn, pp.341-396, Academic Press, New York.